SoC Features

The SAMA5D2 series is a high-performance, ultra-low-power ARM Cortex-A5 processor based MPU. The Cortex A5 processor runs up to 500MHz and features the ARM NEON SIMD engine a 128kB L2 cache and a floating point unit. It supports multiple memories, including latest-generation technologies such as DDR3, LPDDR3, and QSPI Flash. It integrates powerful peripherals for connectivity (EMAC, USB, dual CAN, up to 10 UARTs, etc.) and user interface applications (TFT LCD controller, embedded capacitive touch controller, class D amplifier, audio PLL, CMOS sensor interface, etc.). The devices offer advanced security functions to protect customer code and secure external data transfers. These include ARM TrustZone, tamper detection, secure data storage, hardware encryption engines including private keys, on-the-fly decryption of code stored in external DDR or QSPI memory and a secure boot loader.

SAMA5D2 Chip Features

Kit Information

Kit Overview


Access the console

The usual serial communication parameters are 115200 8-N-1 :

Baud rate 115200
Data 8 bits
Parity None
Stop 1 bit
Flow control None

Access the console on JLINK micro-A USB connector (J9)

The serial console can be accessed from the micro-A USB connector that gives access to the on-board serial-to-USB converter (marked as J9 JLINK). In fact, the ATSAM3U chip on the Evaluation Kit acts as a serial-to-USB converter and is loaded with a firmware that is able to talk USB-CDC protocol.

  • For Microsoft Windows users: Install the J-Link CDC USB driver. No need to install a driver on any regular Linux distribution.
  • Connect the USB cable to the board (J9 JLINK)
    • For Microsoft Windows users: identify the USB connection that is established
      JLINK CDC UART Port should appear in Device Manager. The COMxx number will be used to configure the terminal emulator.
    • For Linux users: identify the USB connection by monitoring the last lines of dmesg command. The /dev/ttyACMx number will be used to configure the terminal emulator:
      usb 1- new high-speed USB device number 33 using ehci-pci
      usb 1- config 1 interface 1 altsetting 0 bulk endpoint 0x83 has invalid maxpacket 64
      usb 1- config 1 interface 1 altsetting 0 bulk endpoint 0x4 has invalid maxpacket 64
      usb 1- New USB device found, idVendor=1366, idProduct=0105
      usb 1- New USB device strings: Mfr=1, Product=2, SerialNumber=3
      usb 1- Product: J-Link
      usb 1- Manufacturer: SEGGER
      usb 1- SerialNumber: 000483029109
      cdc_acm 1- ttyACM0: USB ACM device
  • Now open your favorite terminal emulator with appropriate settings


Demo archives

Media type Board Screen Binary Description
Yocto Project / Poky based demo
NAND Flash SAMA5D2 PTC EK - (~ 61 MB)
md5: f4d852e76b26702e83bcc92fdabe4581
Linux4SAM Yocto Project / Poky based demo
compiled from tag linux4sam_5.8
Follow procedure: #Flash_the_demo
SD Card image SAMA5D2 PTC EK - linux4sam-poky-sama5d2_ptc_ek-5.8.img.bz2 (~ 48 MB)
md5: f498ead7b686816cd481e5ab8786c696
Linux4SAM Yocto Project / Poky based demo
compiled from tag linux4sam_5.8
Follow procedure: #Create_a_SD_card_with_the_demo
BuildRoot based demo
SD Card image SAMA5D2 PTC EK - linux4sam-buildroot-sama5d2_ptc_ek-5.8.img.bz2 (~ 22 MB)
md5: e007dc8a7a819f58c6b30e6301121bad
Linux4SAM BuildRoot based demo
compiled from tag linux4sam_5.8
Follow procedure: #Create_a_SD_card_with_the_demo

Create a SD card with the demo

You need a 1 GB SD card (or more) and to download the image of the demo. The image is compressed to reduce the amount of data to download. This image contains:

  • a FAT32 partition with the AT91Bootstrap, U-Boot and the Linux Kernel (zImage and dtb).
  • an EXT4 partition for the rootfs.

Multi-platform procedure

To write the compressed image on the SD card, you will have to download and install Etcher. This tool, which is an Open Source software, is useful since it allows to get a compressed image as input. More information and extra help available on the Etcher website.

  • Insert your SD card and launch Etcher:

Etcher selection step

  1. Select the demo image. They are marked as "SD Card image" in the demo table above.
    Note that you can select a compressed image (like the demos available here). The tool is able to uncompress files on the fly
  2. Select the device corresponding to your SD card (Etcher proposes you the devices that are removable to avoid erasing your system disk)
  3. Click on the Flash! button
  4. On Linux, Etcher finally asks you to enter your root password because it needs access to the hardware (your SD card reader or USB to SD card converter)
  5. then the flashing process begins followed by a verification phase (optional)

Etcher flashing done!

  • Once writing done, Etcher asks you if you want to burn another demo image:

Etcher flashing done!

  • Your SD card is ready!

Flash the demo

HELP If you need to store the root filesystem on a SD Card, use information contained in StroreRootFSonSD. This is useful for Linux4SAM demos older than 5.6.

ALERT! use SAM-BA 3.2.y onwards. You can download it here: SAM-BA 3.x release page.

Connect the USB to the board before launching SAM-BA

  • Open the JP8 to prevents booting from NAND Flash by disabling Flash Chip Selects
  • Connect a USB micro-A cable to the board (J4 USB-A). It powers the board
  • check whether the board is found in your PC as a USB device:
    • For Microsoft Windows users: verify that the USB connection is well established
      AT91 USB to Serial Converter should appear in Device Manager. If it shows a unknown device you need to download and install the driver: AT91SAM USB CDC driver
      AT91 USB to Serial Converter
    • For Linux users: check /dev/ttyACMx by monitoring the last lines of dmesg command:

[172677.700868] usb 2-1.4.4: new full-speed USB device number 31 using ehci-pci
[172677.792677] usb 2-1.4.4: not running at top speed; connect to a high speed hub
[172677.793418] usb 2-1.4.4: New USB device found, idVendor=03eb, idProduct=6124
[172677.793424] usb 2-1.4.4: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[172677.793897] cdc_acm 2-1.4.4:1.0: This device cannot do calls on its own. It is not a modem.
[172677.793924] cdc_acm 2-1.4.4:1.0: ttyACM0: USB ACM device
idVendor=03eb, idProduct=6124: from this message you can see it's Microchip board USB connection.

  • Short the JP8 to allow access to the on-board Flash devices

Run script to flash the demo

  • download the demo package for the board. They are marked as "Media type: NAND Flash" in the table above
  • extract the demo package
  • run your usual terminal emulator and enter the demo directory
  • make sure that the sam-ba application is in your Operating System path so that you can reach it from your demo package directory
  • for Microsoft Windows users: Launch the demo_linux_nandflash.bat file
  • for Linux users: Launch the file
  • this script runs SAM-BA 3 and the associated QML sam-ba script (demo_linux_nandflash_usb.qml) with proper parameters
  • when you reach the end of the flashing process (this will take a few minutes), the following line is written:
    -I- === Done. ===
  • connect a serial link on DBGU and open the terminal emulator program as explained just above
  • power cycle the board
  • monitor the system while it's booting on the LCD screen or through the serial line

Play with the demo

First of all, don't be worried by the following logs:

atmel_ptc 800000.ptc: Loading configuration: microchip/ptc_cfg.bin
atmel_ptc 800000.ptc: Direct firmware load for microchip/ptc_cfg.bin failed with error -2
atmel_ptc 800000.ptc: Can't load configuration microchip/ptc_cfg.bin
atmel_ptc: probe of 800000.ptc failed with error -2

It happens only because the ptc_cfg.bin file is missing. It is the configuration file loaded by default. As we don't know which wing you are going to use there is no default configuration file provided. If you want to use a specific configuration file, you can use the PTC driver parameter configuration_file.

Helper scripts are provided in the home directory to remove the atmel_ptc module as it has not been probed successfully during the boot time and to insert the module with the appropriate configuration file:

# ls
start_ptc_qt1_mutual_demo  start_ptc_qt2_mutual_demo
start_ptc_qt1_self_demo    start_ptc_qt6_mutual_demo

Launch the script matching the QT wing you are using. For instance, for the QT1 Mutual Capacitance, do:

# ./start_ptc_qt1_mutual_demo
remove atmel_ptc driver...
load atmel_ptc module with ptc_cfg_qt1_mutual configuration...
atmel_ptc 800000.ptc: Loading configuration: microchip/ptc_cfg_qt1_mutual.bin
atmel_ptc 800000.ptc: firmware version: PPP_VER_006.004, tool version: MQC_VER_102
atmel_ptc 800000.ptc: date: 201802221828, description: qt1mc parameters
input: atmel_ptc_buttons as /devices/platform/ahb/ahb:apb/800000.ptc/input/input3
input: atmel_ptc_slider as /devices/platform/ahb/ahb:apb/800000.ptc/input/input1
input: atmel_ptc_wheel as /devices/platform/ahb/ahb:apb/800000.ptc/input/input2
start ptc_qt1_mutual_demo...
demo running...

Then you can play with the wing. Hit Ctrl-C to stop the demo.

ALERT! If you want to switch to another wing, please reboot the SAMA5D2 PTC EK board.

ALERT! Because of pinmuxing constraints, some LEDs or sensors are not working, it's not a bug!

You can find the source code of the PTC examples here: ptc_examples page.

Build From source code

Setup ARM Cross Compiler

  • Ubuntu:
    In Ubuntu, you can install the ARM Cross Compiler by doing:
    sudo apt-get install gcc-arm-linux-gnueabi
    export CROSS_COMPILE=arm-linux-gnueabi-

  • Others:
    For others, you can download the Linaro cross compiler and setup the environment by doing:
    wget -c
    tar xf gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabi.tar.xz
    export CROSS_COMPILE=`pwd`/gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabi/bin/arm-linux-gnueabi-

Build AT91Bootstrap from sources

This section describes how to get source code from the git repository, how to configure with the default configuration, how to customize AT91Bootstrap based on the default configuration and finally to build AT91Bootstrap to produce the binary. take the default configuration to download U-Boot from NandFlash for example.

Get AT91Bootstrap Source Code

You can easily download AT91Bootstrap source code on the at91bootstrap git repository.

To get the source code, you should clone the repository by doing:

$ git clone git://
Cloning into 'at91bootstrap'...
remote: Reusing existing pack: 2476, done.
remote: Counting objects: 167, done.
remote: Compressing objects: 100% (167/167), done.
remote: Total 2643 (delta 135), reused 0 (delta 0)
Receiving objects: 100% (2643/2643), 2.06 MiB | 270 KiB/s, done.
Resolving deltas: 100% (1809/1809), done.
$ cd at91bootstrap/

Configure AT91Bootstrap

Assuming you are at the AT91Bootstrap root directory, you will find a board/sama5d2_ptc_ek folder which contains several default configuration files:


TIP Tips: nf means to read nandflash, sd means to read mmc card.

You can configure AT91Bootstrap to load U-Boot binary from SD Card by doing:

$ make mrproper
$ make sama5d2_ptc_eksd_uboot_defconfig
If the configuring process is successful, the .config file can be found at AT91Bootstrap root directory.

Customize AT91Bootstrap

If the default configuration doesn't meet your need, after configuring with the default configuration, you can customize it by doing:
$ make menuconfig
Now, in the menuconfig dialog, you can easily add or remove some features to/from AT91Bootstrap as the same way as kernel configuration.

Build AT91Bootstrap

Then you can build the AT91Bootstrap binary by doing:
$ make

If the building process is successful, the final .bin image is binaries/at91bootstrap.bin.

Build U-Boot from sources

Getting U-Boot sources

Dedicated page on U-Boot wiki:

You can easily download U-Boot source code from Linux4SAM GitHub U-Boot repository:

  • clone the Linux4sam GitHub U-Boot repository
       $ git clone git://
       Cloning into 'u-boot-at91'...
       remote: Counting objects: 219350, done.
       remote: Compressing objects: 100% (40142/40142), done.
       remote: Total 219350 (delta 175755), reused 219350 (delta 175755)
       Receiving objects: 100% (219350/219350), 56.01 MiB | 1.24 MiB/s, done.
       Resolving deltas: 100% (175755/175755), done.
       $ cd u-boot-at91

  • The source code has been taken from the master branch which is pointing to the latest branch we use. If you want to use the other branch, you can list them and use one of them by doing:
       $ git branch -r
       origin/HEAD -> origin/master
       $ git checkout origin/u-boot-2017.03-at91 -b u-boot-2017.03-at91
       Branch u-boot-2017.03-at91 set up to track remote branch u-boot-2017.03-at91 from origin.
       Switched to a new branch 'u-boot-2017.03-at91'

Cross-compiling U-Boot

Before compiling the U-Boot, you need setup cross compile toolchain in the section.

Once the AT91 U-Boot sources available, cross-compile U-Boot is made in two steps: configuration and compiling. Check the Configuration chapter in U-Boot reference manual.

Pointing hand Go to the configs/ to find the exact target when invoking make.

The U-Boot environment variables can be stored in different media, above config files can specify where to store the U-Boot environment.

   # To put environment variables in nand flash:
   # To put environment variables in SD/MMC card:

Here are the building steps for the SAMA5D2-PTC-EK board:

# You can change the config according to your needs.
make sama5d2_ptc_ek_mmc_defconfig

The result of these operations is a fresh U-Boot binary called u-boot.bin corresponding to the binary ELF file u-boot.

  • u-boot.bin is the file you should store on the board
  • u-boot is the ELF format binary file you may use to debug U-Boot through a JTag link for instance.

Build Kernel from sources

Getting Kernel sources

To get the source code, you have to clone the repository:

$ git clone git://
Cloning into 'linux-at91'...
remote: Counting objects: 4524288, done.
remote: Compressing objects: 100% (721/721), done.
remote: Total 4524288 (delta 385), reused 1 (delta 1), pack-reused 4523564
Receiving objects: 100% (4524288/4524288), 1.22 GiB | 1.35 MiB/s, done.
Resolving deltas: 100% (3777338/3777338), done.
Checking connectivity... done.
Checking out files: 100% (49565/49565), done.

The source code has been taken from the master branch which is pointing on the latest branch we use.

Pointing hand Note that you can also add this Linux4SAM repository as a remote GIT repository to your usu

$ git remote add linux4sam git://
$ git remote update linux4sam
Fetching linux4sam
From git://
 * [new branch]                linux-2.6.39-at91 -> linux4sam/linux-2.6.39-at91
 * [new branch]                linux-3.10-at91 -> linux4sam/linux-3.10-at91
 * [new branch]                linux-3.15-at91 -> linux4sam/linux-3.15-at91
 * [new branch]                linux-3.18-at91 -> linux4sam/linux-3.18-at91
 * [new branch]                linux-3.4.9-at91 -> linux4sam/linux-3.4.9-at91
 * [new branch]                linux-3.6.9-at91 -> linux4sam/linux-3.6.9-at91
 * [new branch]                linux-4.1-at91 -> linux4sam/linux-4.1-at91
 * [new branch]                linux-4.4-at91 -> linux4sam/linux-4.4-at91
 * [new branch]                linux-4.9-at91 -> linux4sam/linux-4.9-at91
 * [new branch]                master     -> linux4sam/master

If you want to use an other branch, you can list them and use one of them by doing this:

$ git branch -r
  origin/HEAD -> origin/master
$ git checkout origin/linux-4.9-at91 -b linux-4.9-at91
Branch linux-4.9-at91 set up to track remote branch linux-4.9-at91 from origin.
Switched to a new branch 'linux-4.9-at91'

Configure and Build the Linux kernel

Now you have to configure the Linux kernel according to your hardware. We have two default configuration at91 SoC in arch/arm/configs

  • at91_dt_defconfig: for at91sam ARM926 series chips
  • sama5_defconfig: for SAMA5 series chips

At this step, you can modify default configuration using the menuconfig

$ make ARCH=arm menuconfig

And build the Linux kernel image, before you build you need set up the cross compile toolchain, check this section.

$ make ARCH=arm


  Kernel: arch/arm/boot/Image is ready
  Kernel: arch/arm/boot/zImage is ready

Now you have an usable compressed kernel image zImage.

If you need an uImage you can run this additional step:

make ARCH=arm uImage LOADADDR=0x20008000


  Kernel: arch/arm/boot/zImage is ready
  UIMAGE  arch/arm/boot/uImage
Image Name:   Linux-4.1.0-linux4sam_5.3+
Created:      Fri Sep  9 17:02:45 2016
Image Type:   ARM Linux Kernel Image (uncompressed)
Data Size:    3441072 Bytes = 3360.42 kB = 3.28 MB
Load Address: 20008000
Entry Point:  20008000
  Image arch/arm/boot/uImage is ready

make ARCH=arm dtbs

  DTC     arch/arm/boot/dts/at91-kizbox2.dtb
  DTC     arch/arm/boot/dts/at91-sama5d2_ptc.dtb
  DTC     arch/arm/boot/dts/at91-sama5d27_som1_ek.dtb
  DTC     arch/arm/boot/dts/at91-sama5d27_som1_ek_pda4.dtb
  DTC     arch/arm/boot/dts/at91-sama5d27_som1_ek_pda7.dtb
  DTC     arch/arm/boot/dts/at91-sama5d27_som1_ek_pda7b.dtb
  DTC     arch/arm/boot/dts/at91-sama5d2_xplained.dtb
  DTC     arch/arm/boot/dts/at91-sama5d2_xplained_pda4.dtb
  DTC     arch/arm/boot/dts/at91-sama5d2_xplained_pda7.dtb
  DTC     arch/arm/boot/dts/at91-sama5d2_xplained_pda7b.dtb
  DTC     arch/arm/boot/dts/at91-sama5d3_xplained.dtb
  DTC     arch/arm/boot/dts/at91-sama5d3_xplained_pda4.dtb
  DTC     arch/arm/boot/dts/at91-sama5d3_xplained_pda7.dtb
  DTC     arch/arm/boot/dts/at91-sama5d3_xplained_pda7b.dtb
  DTC     arch/arm/boot/dts/sama5d31ek.dtb
  DTC     arch/arm/boot/dts/sama5d33ek.dtb
  DTC     arch/arm/boot/dts/sama5d34ek.dtb
  DTC     arch/arm/boot/dts/sama5d35ek.dtb
  DTC     arch/arm/boot/dts/sama5d36ek.dtb
  DTC     arch/arm/boot/dts/sama5d36ek_cmp.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4_ma5d4evk.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4_xplained.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4_xplained_pda4.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4_xplained_hdmi.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4_xplained_pda7.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4ek.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4_xplained_pda7b.dtb
  DTC     arch/arm/boot/dts/at91-sama5d4ek_isi.dtb
  DTC     arch/arm/boot/dts/at91-vinco.dtb

If the building process is successful, the final images can be found under arch/arm/boot/ directory.

Build Yocto/Poky rootfs from sources

Note that building an entire distribution is a long process. It also requires a big amount of free disk space.

The support for Atmel AT91 SoC family is included in a particular Yocto layer: meta-atmel. The source for this layer are hosted on Linux4SAM GitHub account:

Building environment

A step-by-step comprehensive installation is explained in the Yocto Project Quick Start. The following lines have to be considered as an add-on that is AT91 specific or that can facilitate your setup.


Here are the reference pages for setting up a Yocto building environment: What You Need and How You Get It.

Step by step build procedure

Note here is a copy of the README procedure available directly in the meta-atmel layer. This file in the meta-atmel layer repository must be considered as the reference and the following copy can be out-of-sync.

This layer provides support for Microchip microprocessors (aka AT91)

For more information about the Microchip MPU product line see:
Linux & Open Source on Microchip microprocessors:

Supported SoCs / MACHINE names
Note that most of the machine names below, have a SD Card variant that can be
built by adding an "-sd" suffix to the machine name.
- SAMA5D2 product family / sama5d2-xplained, sama5d27-som1-ek-sd, sama5d2-ptc-ek
- SAMA5D4 product family / sama5d4ek, sama5d4-xplained
- SAMA5D3 product family / sama5d3xek, sama5d3-xplained
- AT91SAM9x5 product family (AT91SAM9G15, AT91SAM9G25, AT91SAM9X25, AT91SAM9G35 and AT91SAM9X35) / at91sam9x5ek
- AT91SAM9RL / at91sam9rlek
- AT91SAM9G45 / at91sam9m10g45ek

- meta-atmel
URI: git://
Branch: rocko

This Layer depends on :
- meta-openembedded
URI: git://
Branch: rocko

- meta-qt5
URI: git://
Tag: v5.9.4

Build procedure

0/ Create a directory
mkdir my_dir
cd my_dir

1/ Clone yocto/poky git repository with the proper branch ready
git clone git:// -b rocko

2/ Clone meta-openembedded git repository with the proper branch ready
git clone git:// -b rocko

3/ Clone meta-qt5 git repository with the proper branch ready
git clone git://
cd meta-qt5
git checkout v5.9.4
cd ..

4/ Clone meta-atmel layer with the proper branch ready
git clone git:// -b rocko

5/ Enter the poky directory to configure the build system and start the build process
cd poky

6/ Initialize build directory
source oe-init-build-env build-atmel

7/ Add meta-atmel layer to bblayer configuration file
vim conf/bblayers.conf

# POKY_BBLAYERS_CONF_VERSION is increased each time build/conf/bblayers.conf
# changes incompatibly


BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE', True)) + '/../../..')}"

  ${BSPDIR}/poky/meta \
  ${BSPDIR}/poky/meta-poky \
  ${BSPDIR}/poky/meta-yocto-bsp \
  ${BSPDIR}/meta-atmel \
  ${BSPDIR}/meta-openembedded/meta-oe \
  ${BSPDIR}/meta-openembedded/meta-networking \
  ${BSPDIR}/meta-openembedded/meta-python \
  ${BSPDIR}/meta-openembedded/meta-multimedia \
  ${BSPDIR}/meta-qt5 \

  ${BSPDIR}/poky/meta \
  ${BSPDIR}/poky/meta-poky \

8/ Edit local.conf to specify the machine, location of source archived, package type (rpm, deb or ipk)
Pick one MACHINE name from the "Supported SoCs / MACHINE names" chapter above
and edit the "local.conf" file. Here is an example:

vim conf/local.conf
MACHINE ??= "sama5d3-xplained"
DL_DIR ?= "your_download_directory_path"
PACKAGE_CLASSES ?= "package_ipk"
USER_CLASSES ?= "buildstats image-mklibs"

To get better performance, use the "poky-atmel" distribution by also adding that
DISTRO = "poky-atmel"

9/ Build core minimal image
bitbake core-image-minimal

10/ We found that additional local.conf changes are needed for our QT demo
image. You can add these two lines at the end of the file:
vim conf/local.conf

11/ Build Atmel demo images
bitbake atmel-qt5-demo-image

Typical bitbake output
Build Configuration:
BB_VERSION        = "1.36.0"
BUILD_SYS         = "x86_64-linux"
NATIVELSBSTRING   = "universal"
TARGET_SYS        = "arm-poky-linux-gnueabi"
MACHINE           = "sama5d2-xplained"
DISTRO            = "poky-atmel"
DISTRO_VERSION    = "2.4.2"
TUNE_FEATURES     = "arm armv7a vfp thumb neon callconvention-hard cortexa5"
TARGET_FPU        = "hard"
meta-yocto-bsp    = "rocko:cca8bde9d700d68c5f36d7d4c47c048526aedfc0"
meta-atmel        = "rocko:0353a4afb1f404aa0830b19dcde4f057070a4ce3"
meta-multimedia   = "rocko:dacfa2b1920e285531bec55cd2f08743390aaf57"
meta-qt5          = "HEAD:e721e84659869e4a04838d95d7cdbab9d48f5c3d"

To contribute to this layer you should submit the patches for review to:
the github pull-request facility directly or the forum. Anyway, don't forget to
Cc the maintainers.

AT91 Forum:

for some useful guidelines to be followed when submitting patches:

Nicolas Ferre 
Patrice Vilchez 

When creating patches insert the [meta-atmel] tag in the subject, for example
use something like:
git format-patch -s --subject-prefix='meta-atmel][PATCH' <origin>

Using SAM-BA to flash components to board

NAND Flash demo - Memory map


Install SAM-BA software in your PC

In addition to the official SAM-BA pages on, we maintain information about SAM-BA in the SoftwareTools page.

ALERT! use SAM-BA 3.2.y onwards. You can download it here: SAM-BA 3.x release page.

Launch SAM-BA tools

  • According to this section make sure that the chip can execute the SAM-BA Monitor.

In addition to the Qt5 QML language for scripting used for flashing the demos, most common SAM-BA action can be done using SAM-BA command line.

For browsing information on the SAM-BA command line usage, please see the Command Line Documentation that is available in the SAM-BA installation directory: doc/index.html or doc/cmdline.html .

SAM-BA includes command line interface that provides support for the most common actions:

  • reading / writing to arbitrary memory addresses and/or peripherals
  • uploading applets and using them to erase/read/write external memories

The command line interface is designed to be self-documenting.

The main commands can be listed using the "sam-ba --help" command:

Usage: ./sam-ba [options]
SAM-BA Command Line Tool

  -v, --version                          Displays version information.
  -h, --help                             Displays this help.
  -x, --execute <script.qml>             Execute script <script-file>.
  -p, --port <port[:options:...]>        Communicate with device using <port>.
  -d, --device <device>                  Connected device is <device>.
  -b, --board <board>                    Connected board is <board>.
  -m, --monitor <command[:options:...]>  Run monitor command <command>.
  -a, --applet <applet[:options:...]>    Load and initialize applet <applet>.
  -c, --command <command[:args:...]>     Run command <command>.

Additional help can be obtained for most commands by supplying a "help" parameter that will display their usage.

For example "sam-ba --port help" will display:

Known ports: j-link, serial

Command that take an argument with options (port, monitor, applet) will display even more documentation when called with "help" as option value.

For example "sam-ba --port serial:help" will display:

Syntax: serial:[<port>]:[<baudrate>]
Examples: serial -> serial port (will use first AT91 USB if found otherwise first serial port)
          serial:COM80 -> serial port on COM80
          serial:ttyUSB0:57600 -> serial port on /dev/ttyUSB0, baudrate 57600

Configure NAND ECC

Using default PMECC parameters

IDEA! when choosing the board variant with the -b parameter of SAM-BA, the default PMECC configuration for the NAND populated on the board is valid. You can verify its value by running the command that reads one byte in a dummy file (named test.bin in the following command):

# sam-ba -p serial -b sama5d4-xplained -a nandflash -c read:test.bin:0:1
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Executing command 'read:test.bin:0:1'
Read 1 bytes at address 0x00000000 (100.00%)
Connection closed.
You can figure out that the default PMECC parameter for this sama5d4-xplained board is 0xc1e04e07.

HELP: Note that if you connect a serial console to the SoC RomCode default UART, you can see even more details about the NAND ECC parameters given by the SAM-BA Applet:

Applet 'NAND Flash' from softpack 2.10 (v2.10).
Initializing NAND ioSet1 Bus Width 8
PMECC configuration: 0xc1e04e07
Sector size: 512
Sectors per page: 8
Spare size: 224
ECC bits: 8
ECC offset: 120
ECC size: 104
PMECC enabled
Buffer Address: 0x0020a240
Buffer Size: 20480 bytes
NAND applet initialized successfully.

If you want to change the default PMECC parameters you can simply specify another value on the SAM-BA command line with the -a nandflash argument as shown below:

# sam-ba -p serial -b sama5d4-xplained -a nandflash:help
Syntax: nandflash:[<ioset>]:[<bus_width>]:[<header>]
    ioset      I/O set
    bus_width  NAND bus width (8/16)
    header     NAND header value
    nandflash                 use default board settings
    nandflash:2:8:0xc0098da5  use fully custom settings (IOSET2, 8-bit bus, header is 0xc0098da5)
    nandflash:::0xc0098da5    use default board settings but force header to 0xc0098da5
For information on NAND header values, please refer to SAMA5D4 datasheet section "12.4.4 Detailed Memory Boot Procedures".
By reading this in-line documentation we can specify the NAND PMECC parameter with this command:
# sam-ba -p serial -b sama5d4-xplained -a nandflash:::0xc1e04e07
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Connection closed.

Programming components into NAND

Program AT91Bootstrap binary

Run SAM-BA with USB connection (equivalent to serial) and erase the beginning of the NAND flash and then write AT91Bootstrap binary:

# sam-ba -p serial -b sama5d4-xplained -a nandflash -c erase::0x40000 -c writeboot:at91bootstrap-sama5d4_xplained.bin
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Executing command 'erase::0x40000'
Erased 262144 bytes at address 0x00000000 (100.00%)
Executing command 'writeboot:at91bootstrap-sama5d4_xplained.bin'
Prepended NAND header prefix (0xc1e04e07)
Appending 4008 bytes of padding to fill the last written page
Wrote 20480 bytes at address 0x00000000 (83.33%)
Wrote 4096 bytes at address 0x00005000 (100.00%)
Connection closed.

Program U-Boot binary

Run SAM-BA with USB connection (equivalent to serial) and erase the U-Boot section in the NAND flash memory map and then write U-Boot binary:

# sam-ba -p serial -b sama5d4-xplained -a nandflash -c erase:0x40000:0x80000 -c write:u-boot-sama5d4-xplained.bin:0x40000
Opening serial port 'ttyACM0'
Connection opened.
Detected memory size is 536870912 bytes.
Page size is 4096 bytes.
Buffer is 20480 bytes (5 pages) at address 0x0020a240.
NAND header value is 0xc1e04e07.
Supported erase block sizes: 256KB
Executing command 'erase:0x40000:0x80000'
Erased 262144 bytes at address 0x00040000 (50.00%)
Erased 262144 bytes at address 0x00080000 (100.00%)
Executing command 'write:u-boot-sama5d4-xplained.bin:0x40000'
Appending 3137 bytes of padding to fill the last written page
Wrote 20480 bytes at address 0x00040000 (4.59%)
Wrote 20480 bytes at address 0x00045000 (9.17%)
Wrote 20480 bytes at address 0x0004a000 (13.76%)
Wrote 20480 bytes at address 0x00094000 (81.65%)
Wrote 20480 bytes at address 0x00099000 (86.24%)
Wrote 20480 bytes at address 0x0009e000 (90.83%)
Wrote 20480 bytes at address 0x000a3000 (95.41%)
Wrote 20480 bytes at address 0x000a8000 (100.00%)
Connection closed.

Recent FAQ


Using Atmel DRMDriver: Using Atmel KMS/DRM LCD driver. (Kernel, linux-3.18-at91, linux-4.1-at91, linux-4.4-at91, linux-4.9-at91)
Console No Longer Receives Characters: Can't interact with the console. (U-Boot, Kernel)
Gui Solutions: Presentation of some GUI solutions. (YoctoProject)
Yocto Project FAQ: Some Yocto Project FAQ entries. (YoctoProject)
Using Ultra Low Power Mode 1: Using Ultra Low Power mode 1 (ULP1). (Kernel, linux-4.1-at91, linux-4.4-at91)
Driver Model In UBoot: How to enable U-Boot driver model, using Sama5d2Xplained as an example. (U-Boot)
Connect Module From PDA: How to connect LCD module from PDA to the Xplained Boards. (Kernel)
SDCard Boot Notice: How to boot up the board from SD card. (AT91Bootstrap)
Using Max Touch: Introduction for how to use MaxTouch. (Kernel, linux-3.18-at91, linux-4.1-at91, linux-4.4-at91, linux-4.9-at91)
Pwm Faq: PWM Driver. (Kernel, linux-3.10-at91, linux-3.18-at91, linux-4.1-at91, linux-4.4-at91, linux-4.9-at91)
USBGadget Config: Configure AT91 USB Gadget on Linux and Endpoint order management (composite USB). (Kernel, linux-4.4-at91, linux-4.9-at91)
Crypto Config: How to configure Crypto driver. (Kernel, linux-3.18-at91, linux-4.1-at91, linux-4.4-at91, linux-4.9-at91)
Convert SAMBAScript: SAM-BA API revisions. (SAM-BA)
Using ISC: How to use the Image Sensor Controller. (linux-4.9-at91)
Using SAMA5 D2 ADCDevice: Using the SAMA5D2-compatible ADC device. (Kernel, linux-4.1-at91, linux-4.4-at91, linux-4.9-at91)
r1 - 03 Apr 2018 - 08:35:08 - LudovicDesroches
Linux & Open Source related information for AT91 Smart ARM Microcontrollers

Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Atmel® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. This site is powered by the TWiki collaboration platform

ARM® and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

Ideas, requests, contributions ? Connect to LinksToCommunities page.

Syndicate this siteRSS ATOM